Crucial interactions of functional pyrenes with graphite in electrodes for lithium‐ion batteries

Author:

Bauer Marina1,Konnerth Philipp2,Radinger Hannes13,Pfeifer Kristina1,Joshi Yug1,Bauer Felix1,Ehrenberg Helmut1,Scheiba Frieder1

Affiliation:

1. Institute for Applied Materials Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany

2. Department of Conversion Technologies of Biobased Resources University of Hohenheim Stuttgart Germany

3. Department of Chemical and Process Engineering University of Canterbury Christchurch New Zealand

Abstract

AbstractPolycyclic aromatic hydrocarbons, such as pyrenes, are a well‐known material class for non‐covalent modification of carbon surfaces in many applications. In electrochemical energy storage, pyrenes are mostly used in large polymeric structures. This work addresses the use of carboxy‐ and amino‐functionalized pyrenes for graphite electrodes for lithium‐ion batteries (LIBs). Pyrenes are explored as adsorbed species on graphite prior to electrode fabrication and as additives to the electrode composition. Thereby, 1‐pyrenecarboxylic acid, 1‐pyrenebutyric acid, 1‐aminopyrene, and 1‐pyrenebutylamine were under investigation. As additives, pyrenes do not influence the cycling performance of the electrode at low current but deteriorate the performance at high current, regardless of the functional group. However, when the pyrenes are adsorbed to the graphite surface, the influence of the different functional groups becomes clearly visible, revealing that an additional butyl group has a positive impact on the cycling performance and lithium‐ion transport of the electrodes. Electrodes with 1‐pyrenebutyric acid even enhanced the performance compared to the pristine electrode.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3