Affiliation:
1. Food Colloids and Bioprocessing Group School of Food Science and Nutrition University of Leeds Leeds UK
2. Molecular and Nanoscale Physics Group School of Physics and Astronomy University of Leeds Leeds UK
Abstract
AbstractAqueous multiphasic systems have attracted a great deal of interest recently owing to the growing demands of sustainability for the development of stable “oil‐free” emulsions, often complicated by their limited stability against droplet coarsening. Although particles may provide ultrastability to water‐in‐water (W/W) emulsions formed in phase‐separating polymer systems, the need for lubrication in such W/W emulsions presents an important challenge for their use in diverse applications. Herein, W/W Pickering emulsions were stabilized by sustainable plant protein (pea)‐based microgels (PPM) using starch and xanthan gum as the biopolymers to generate the W/W phase separating droplet structures. The lubricity of these systems was compared with that of parallel systems stabilized by animal (whey) protein microgels (WPM). New results reveal that PPM are more soft and adhesive than WPM and outperform the latter in boundary lubrication performance, in striking contrast to the behavior of the non‐microgelled pea or whey proteins. Furthermore, the PPM tend to stabilize a different, less spherical type of W/W droplet than the WPM that may explain the lower friction observed in PPM‐stabilized systems. The novel approach of fabricating W/W emulsions stabilized by sustainable microgels opens up new solutions in designing aqueous lubricants for future nutritional and biomedical applications.
Funder
H2020 European Research Council
Subject
Industrial and Manufacturing Engineering