Combining bidirectional long short‐term memory and self‐attention mechanism for code search

Author:

Cao Ben12ORCID,Liu Jianxun12

Affiliation:

1. School of Computer Science and Engineering Hunan University of Science and Technology Xiangtan China

2. Key Lab for Services Computing and Novel Software Technology Hunan University of Science and Technology Xiangtan China

Abstract

SummaryWith the wide application of deep learning in code search, especially the proposed code search model based on attention mechanism, the accuracy of code search has been greatly improved. However, the attention mechanism only captures the attention weight relationship between two words in the code fragment, without considering the contextual semantic relationship that exists between words in the code fragment, which can help improve the accuracy of code search. To address this problem, this paper proposes a model that combining bidirectional long short‐term memory and self‐attention mechanisms for code search (CBLSAM‐CS). The model first captures the contextual semantic relationship of each word in the code fragment by long‐short term memory network, and then uses the self‐attention mechanism to extract deep‐level features of the sequence. In order to verify the effectiveness of the proposed model, the paper has been conducted an experimental comparison with three other baseline models, CODEnn, CARLCS‐CNN, and SAN‐CS, on the basis of a public dataset containing 18 million code fragments. The experimental results show that the proposed model in this paper achieves 92.24% and 93.55% in mean reciprocal rank value and normalized discounted cumulative gain metrics, respectively, which are better than the baseline model. Therefore, it shows that the CBLSAM‐CS model proposed in this paper can effectively improve the accuracy and efficiency of code search.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3