TACT: Text attention based CNN‐Transformer network for polyp segmentation

Author:

Zhao Yiyang1,Li Jinjiang1ORCID,Hua Zhen2

Affiliation:

1. School of Computer Science and Technology Shandong Technology and Business University Yantai China

2. School of Information and Electronic Engineering Shandong Technology and Business University Yantai China

Abstract

AbstractColorectal cancer (CRC) has been one of the top three disease in the world in terms of incidence for many years. Therefore, how to prevent and treat CRC has become a topic of concern for an increasing number of people, and colonoscopy is the most effective detection method in polyp examination. According to studies, 90% of CRC is caused by adenomatous polyps of the large intestine. In clinical practice, the diversity of polyps' size, number, and shape and the unclear boundary between polyps and colon folds can reduce the operator's accuracy of polyps segmentation and lead to a higher rate of missed diagnosis. To better address the inaccurate segmentation or high miss rate due to the above factors, we propose a text attention‐based CNN‐Transformer network for polyp segmentation (TACT) network to process the images in a way that minimizes operator subjectivity and miss rate. The network is based on the CNN‐Transformer structure, and on this basis, a fully attention progressive sampling module is added to more accurately divide the polyp boundary. Moreover, an auxiliary text classification task was added to focus on polyp size and number features in the form of text attention, which more effectively copes with the segmentation tasks of different sizes and different numbers of polyps. After comparing with multiple state‐of‐the‐art segmentation methods in four challenging datasets, our proposed TACT improves segmentation accuracy for polyps of different sizes in different datasets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3