Flexible template matching for observational study design

Author:

Zhao Ruochen1,Lu Bo1ORCID

Affiliation:

1. Division of Biostatistics, College of Public Health The Ohio State University Columbus Ohio USA

Abstract

Matching is a popular design for inferring causal effect with observational data. Unlike model‐based approaches, it is a nonparametric method to group treated and control subjects with similar characteristics together, hence to re‐create a randomization‐like scenario. The application of matched design for real world data may be limited by: (1) the causal estimand of interest; (2) the sample size of different treatment arms. We propose a flexible design of matching, based on the idea of template matching, to overcome these challenges. It first identifies the template group which is representative of the target population, then match subjects from the original data to this template group and make inference. We provide theoretical justification on how it unbiasedly estimates the average treatment effect using matched pairs and the average treatment effect on the treated when the treatment group has a bigger sample size. We also propose using the triplet matching algorithm to improve matching quality and devise a practical strategy to select the template size. One major advantage of matched design is that it allows both randomization‐based or model‐based inference, with the former being more robust. For the commonly used binary outcome in medical research, we adopt a randomization inference framework of attributable effects in matched data, which allows heterogeneous effects and can incorporate sensitivity analysis for unmeasured confounding. We apply our design and analytical strategy to a trauma care evaluation study.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3