The MYC–NFATC2 axis maintains the cell cycle and mitochondrial function in acute myeloid leukaemia cells

Author:

Patterson Shaun D.1ORCID,Massett Matthew E.1,Huang Xu1,Jørgensen Heather G.1,Michie Alison M.1ORCID

Affiliation:

1. Paul O'Gorman Leukaemia Research Centre, Gartnavel General Hospital University of Glasgow UK

Abstract

Acute myeloid leukaemia (AML) is a clonal haematological malignancy affecting the myeloid lineage, with generally poor patient outcomes owing to the lack of targeted therapies. The histone lysine demethylase 4A (KDM4A) has been established as a novel therapeutic target in AML, due to its selective oncogenic role within leukaemic cells. We identify that the transcription factor nuclear factor of activated T cells 2 (NFATC2) is a novel binding and transcriptional target of KDM4A in the human AML THP‐1 cell line. Furthermore, cytogenetically diverse AML cell lines, including THP‐1, were dependent on NFATC2 for colony formation in vitro, highlighting a putative novel mechanism of AML oncogenesis. Our study demonstrates that NFATC2 maintenance of cell cycle progression in human AML cells was driven primarily by CCND1. Through RNA sequencing (RNA‐seq) and chromatin immunoprecipitation sequencing (ChIP‐seq), NFATc2 was shown to bind to the promoter region of genes involved in oxidative phosphorylation and subsequently regulate their gene expression in THP‐1 cells. Furthermore, our data show that NFATC2 shares transcriptional targets with the transcription factor c‐MYC, with MYC knockdown phenocopying NFATC2 knockdown. These data suggest a newly identified co‐ordinated role for NFATC2 and MYC in the maintenance of THP‐1 cell function, indicative of a potential means of therapeutic targeting in human AML.

Funder

Howat Foundation

Wellcome Trust

Carnegie Trust for the Universities of Scotland

Medical Research Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3