Affiliation:
1. Science for Life Laboratory, Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
2. One‐carbon Therapeutics AB Stockholm Sweden
3. Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School University of Sheffield UK
Abstract
The one‐carbon metabolism enzyme bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is among the most overexpressed proteins across tumors and is widely recognized as a promising anticancer target. While MTHFD2 is mainly described as a mitochondrial protein, a new nuclear function is emerging. Here, we observe that nuclear MTHFD2 protein levels and association with chromatin increase following ionizing radiation (IR) in an ataxia telangiectasia mutated (ATM)‐ and DNA‐dependent protein kinase (DNA‐PK)‐dependent manner. Furthermore, repair of IR‐induced DNA double‐strand breaks (DSBs) is delayed upon MTHFD2 knockdown, suggesting a role for MTHFD2 in DSB repair. In support of this, we observe impaired recruitment of replication protein A (RPA), reduced resection, decreased IR‐induced DNA repair protein RAD51 homolog 1 (RAD51) levels and impaired homologous recombination (HR) activity in MTHFD2‐depleted cells following IR. In conclusion, we identify a key role for MTHFD2 in HR repair and describe an interdependency between MTHFD2 and HR proficiency that could potentially be exploited for cancer therapy.