Enhancing therapeutic efficacy in triple‐negative breast cancer and melanoma: synergistic effects of modulated electro‐hyperthermia (mEHT) with NSAIDs especially COX‐2 inhibition in in vivo models

Author:

Giunashvili Nino1ORCID,Thomas Jeremiah Mbuotidem1,Schvarcz Csaba András12,Viana Pedro Henrique Leroy1,Aloss Kenan1ORCID,Bokhari Syeda Mahak Zahra1,Koós Zoltán1,Bócsi Dániel1,Major Enikő12,Balogh Andrea1,Benyó Zoltán12,Hamar Péter1ORCID

Affiliation:

1. Institute of Translational Medicine, Semmelweis University Budapest Hungary

2. HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research Group Budapest Hungary

Abstract

Triple‐negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro‐hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin‐1 beta (IL‐1β) and interleukin‐6 (IL‐6) expression, and consequently cyclooxygenase 2 (COX‐2), which may favor a cancer‐promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti‐inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX‐2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase‐3, suggesting that apoptosis played an important role. IL‐1β and COX‐2 expression were significantly reduced by the combination therapies. In addition, a custom‐made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX‐2 inhibitor may offer a new therapeutic option in TNBC.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3