Analyzing the role of cancer‐associated fibroblast activation on macrophage polarization

Author:

Bruch‐Oms Marina1,Olivera‐Salguero Rubén1,Mazzolini Rocco1,del Valle‐Pérez Beatriz12,Mayo‐González Paula1,Beteta Ángel3,Peña Raúl1,García de Herreros Antonio12ORCID

Affiliation:

1. Cancer Research Program, Unidad Asociada al CSIC Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain

2. Department of Medicine and Life Sciences Universitat Pompeu Fabra Barcelona Spain

3. Applied Metabolomics Research Laboratory Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain

Abstract

Snail1 is a transcriptional factor required for cancer‐associated fibroblast (CAF) activation, and mainly detected in CAFs in human tumors. In the mouse mammary tumor virus‐polyoma middle tumor‐antigen (MMTV‐PyMT) model of murine mammary gland tumors, Snai1 gene deletion, besides increasing tumor‐free lifespan, altered macrophage differentiation, with fewer expressing low levels of MHC class II. Snail1 was not expressed in macrophages, and in vitro polarization with interleukin‐4 (IL4) or interferon‐γ (IFNγ) was not altered by Snai1 gene depletion. We verified that CAF activation modified polarization of naïve bone‐marrow‐derived macrophages (BMDMΦs). When BMDMΦs were incubated with Snail1‐expressing (active) CAFs or with conditioned medium derived from these cells, they exhibited a lower cytotoxic capability than when incubated with Snail1‐deleted (inactive) CAFs. Gene expression analysis of BMDMΦs polarized by conditioned medium from wild‐type or Snai1‐deleted CAFs revealed that active CAFs differentially stimulated a complex combination of genes comprising genes that are normally induced by IL4, downregulated by IFNγ, or not altered during the two canonical differentiations. Levels of RNAs relating to this CAF‐induced alternative polarization were sensitive to inhibitors of factors specifically released by active CAFs, such as prostaglandin E2 and TGFβ. Finally, CAF‐polarized macrophages promoted the activation of the immunosuppressive regulatory T cells (T‐regs). Our results imply that an active CAF‐rich tumor microenvironment induces the polarization of macrophages to an immunosuppressive phenotype, preventing the macrophage cytotoxic activity on tumor cells and enhancing the activation of T‐reg cells.

Funder

Ministerio de Educación de la Nación

Publisher

Wiley

Subject

Cancer Research,Genetics,Molecular Medicine,General Medicine,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3