A resolved CFD–DEM investigation into the onset of suffusion: effect of confining pressure and stress anisotropy

Author:

Chen Tianhao1ORCID,Hu Zheng2ORCID,Yang Zhongxuan1ORCID,Zhang Yida3ORCID

Affiliation:

1. Computing Center for Geotechnical Engineering (COMEGE) Engineering Research Center of Urban Underground Space Development of Zhejiang Province Department of Civil Engineering Zhejiang University Hangzhou Zhejiang China

2. School of Civil Engineering Sun Yat‐sen University & Southern Marine Science and Engineering Guangdong Laboratory Zhuhai Guangdong China

3. Department of Civil Environmental and Architectural Engineering University of Colorado Boulder Boulder Colorado USA

Abstract

AbstractThe susceptibility of a granular soil to suffusion is strongly dependent on its grain size distribution (GSD) and the mechanical and hydraulic conditions it is subjected to. This study investigates the onset of suffusion considering the effect of confining pressure and stress anisotropy using a fully resolved computational fluid dynamics and discrete element method (CFD–DEM). Three benchmarks, including the sedimentations of single and two adjacent spheres and the classic one‐dimensional (1D) consolidation are performed to demonstrate the capability of this method for high‐fidelity particle‐fluid simulations. A modified hydraulic criterion for the onset of suffusion considering stress anisotropy is presented. The microstructural changes of soil specimens before and during global suffusion are inspected, with emphasis on the evolutions of particle kinetic energy and displacements, force chain networks, and stress anisotropy. We found that the critical hydraulic gradient is negatively correlated with the confining pressure and the degree of stress anisotropy. Fine particles in the soil matrix are locally detached at small hydraulic gradients before the apparent global suffusion, as manifested by the variation of particle kinetic energy and coordination numbers. The roles of different contact types on force transmission and stress anisotropy in eroded specimens are also examined.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3