First principles insight into the study of the structural, stability, and optoelectronic properties of alkali‐based single halide perovskite ZSnCl3 (Z = Na/K) materials for photovoltaic applications

Author:

Geleta Tesfaye Abebe12ORCID,Behera Debidatta3,Bouri Nabil4ORCID,Rivera Victor José Ramirez5,Gonzalo Fredy Mamani5

Affiliation:

1. Department of Agricultural Chemistry National Taiwan University Taipei Taiwan

2. Global Development Application Center MacDermid Alpha Electronics Solutions Company Taoyuan Taiwan

3. Department of Physics, School of Indigenous Knowledge Science and Technology (IKST) Kalinga Institute of Social Sciences (KISS) DEEMED TO BE UNIVERSITY Bhubaneswar India

4. Laboratory of Materials Physics and Subatomic, Faculty of Science University Ibn Tofail Kénitra Morocco

5. Department of Physics Jorge Basadre Grohmann National University Tacna Peru

Abstract

AbstractMetal halide perovskites are crystalline materials with a sharp increase in popularity and rapidly becoming a major contender for optoelectronic device applications. In this work, we provide the optoelectronic features of a possible novel candidate, ZSnCl3 (Z = Na/K) Sn‐based on a detailed numerical simulation. The output of the current computations is compared to the results that are currently available, and a respectable agreement is noted. The studied compounds were cubic in nature and structurally stabe. The mechanical properties reflect the mechanical stability and ductility of the proposed materials. The Sn‐based single perovskite compounds proposed in this study are mechanically stable and ductile. The narrow direct band gap for NaSnCl3 and KSnCl3 are 1.36 eV and 1.47 eV, respectively, using the HSE06 hybrid function with the Boltztrp2 integrated in Quantum ESPRESSO (QE) software. The effective use of these compounds in perovskite solar cells and other optoelectronic applications was confirmed by optical absorption spectral measurements conducted in the photon energy range of 0–20 eV.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3