Age and medial compartmental OA were important predictors of the lateral compartmental OA in the discoid lateral meniscus: Analysis using machine learning approach

Author:

Cho Joon Hee1ORCID,Kim Myeongju2ORCID,Nam Hee Seung1,Park Seong Yun1,Lee Yong Seuk1ORCID

Affiliation:

1. Department of Orthopedic Surgery, Seoul National University College of Medicine Seoul National University Bundang Hospital Seongnam‐si Korea

2. Division of Clinical Medicine, Center for Artificial Intelligence in Healthcare Seoul National University Bundang Hospital Seongnam‐si Korea

Abstract

AbstractPurposeThe objective of this study was to develop a machine learning model that would predict lateral compartment osteoarthritis (OA) in the discoid lateral meniscus (DLM), from which to then identify factors contributing to lateral compartment OA, with a key focus on the patient's age.MethodsData were collected from 611 patients with symptomatic DLM diagnosed using magnetic resonance imaging between April 2003 and May 2022. Twenty features, including demographic, clinical and radiological data and six algorithms were used to develop the predictive machine learning models. Shapley additive explanation (SHAP) analysis was performed on the best model, in addition to subgroup analyses according to age.ResultsExtreme gradient boosting classifier was identified as the best prediction model, with an area under the receiver operating characteristic curve (AUROC) of 0.968, the highest among all the models, regardless of age (AUROC of 0.977 in young age and AUROC of 0.937 in old age). In the SHAP analysis, the most predictive feature was age, followed by the presence of medial compartment OA. In the subgroup analysis, the most predictive feature was age in young age, whereas the most predictive feature was the presence of medial compartment OA in old age.ConclusionThe machine learning model developed in this study showed a high predictive performance with regard to predicting lateral compartment OA of the DLM. Age was identified as the most important factor, followed by medial compartment OA. In subgroup analysis, medial compartmental OA was found to be the most important factor in the older age group, whereas age remained the most important factor in the younger age group. These findings provide insights that may prove useful for the establishment of strategies for the treatment of patients with symptomatic DLM.Level of EvidenceLevel III.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3