Quaternarized cationic poly[(vinyl chloride)‐co‐(vinyl chloroacetate)] binary copolymer as non‐migration antibacterial additive in PVC matrix

Author:

Jian Xiyan1,Sun Jiaxin1,Gu Xiaojing1,Song Changtong1,Zhang Xianhong1ORCID,Yang Wantai12

Affiliation:

1. College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China

2. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China

Abstract

AbstractAntibacterial polyvinyl chloride (PVC) materials have drawn considerable attention since their wide application in medical devices. The objective of this study is to develop a novel quaternary ammonium cationic vinyl chloride copolymer, which can be potentially used as antibacterial additive in PVC matrix. Initially, the low average‐number molecular weight poly[(vinyl chloride)‐co‐(vinyl chloroacetate)] (PVC‐co‐PVCA) is synthesized by precipitation copolymerization. Subsequently, quaternary ammonium cationic moieties with different lengths of alkyl chains are introduced into the copolymers via quaternization reaction between alkyl‐dimethyl tertiary amines with acyl chloride groups. The successful synthesis of PVC‐co‐PVCA and quaternarized copolymers are carefully confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance (1H NMR), and x‐ray photoelectron spectroscopy. The antibacterial behaviors of the quaternarized copolymers and its blends with PVC are investigated. The results reveal that all the PVC blends containing at least 5% by weight of quaternarized copolymer have superior bacteriostasis ratio (>99.6%) against both Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) due to the incorporation of quaternary ammonium groups. Meanwhile, the cationic copolymer exhibits excellent antifouling and much lower migration rate (<0.4%). These interesting consequences endow the quaternarized copolymers as alternative antibacterial agents possess a great deal of potential for use in PVC materials.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3