Rapid identification of chrysanthemum teas by computer vision and deep learning

Author:

Liu Chunlin12,Lu Weiying2ORCID,Gao Boyan2ORCID,Kimura Hanae2,Li Yanfang2,Wang Jing1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology & Business University (BTBU) Beijing China

2. Institute of Food and Nutraceutical Science School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China

Abstract

AbstractSeven commercial Chinese chrysanthemum tea products were classified by computer vision combined with machine learning algorithms. Without the need of building any specific hardware, the image acquisition was achieved in two computer vision approaches. In the first approach, a series of multivariate classification models were built after morphological feature extraction of the image. The best prediction accuracies when classifying flowering stages and tea types were respectively 90% and 63%. In comparison, the deep neural network was applied directly on the raw image, yielded 96% and 89% correct identifications when classifying flowering stage and tea type, respectively. The model can be applied for rapid and automatic quality determination of teas and other related foods. The result indicated that computer vision, especially when combined with deep learning or other machine learning techniques can be a convenient and versatile method in the evaluation of food quality.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3