Adsorptive elimination of methylene blue dye from aqueous solution by chitosan‐nSiO2 nanocomposite: Adsorption and desorption study, scale‐up design, statistical, and genetic algorithm modeling

Author:

Bhattacharya Samanwita1ORCID,Bar Nirjhar1ORCID,Rajbansi Baisali1,Das Sudip Kumar1ORCID

Affiliation:

1. Department of Chemical Engineering University of Calcutta Kolkata India

Abstract

AbstractHeavy metals and organic dyes in water in concentrations exceeding the tolerable limit are unsafe for aquatic life and humans. Chitosan nanocomposites show a potential adsorption capacity to organic dyes. The present study encompasses the preparation of chitosan‐nSiO2 nanocomposites (CSNC) with different weight ratios of chitosan to nSiO2 and its application in the methylene blue (MB) dye adsorption. The nanocomposites were characterized with the help of SEM, BET, FTIR, XRD, and TGA. The adsorption experimentation was executed in batch mode under varying experimental conditions. Several isotherm and kinetic models were analyzed with the experimental data, and thermodynamic conditions required for adsorption were also determined. Maximum Langmuir adsorption capacities (qL) of the adsorbents for MB varied in the range of 21.32–31.34 mg g−1. The pseudo‐second‐order model was the best‐fitted kinetic model concerning all three adsorbents. The statistical modeling using multiple polynomial regression (MPR) for CWS CSNC1‐1 and CSNC2‐1 yielded the equations with R‐square ranging from 0.984 to 0.996. For GA modeling, it is more than 0.999. So, the efficient employment of statistical modeling, and genetic algorithms has also been achieved.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3