Effect of borosilicate residue as flame retardant and reinforcement filler in polypropylene/natural fiber composites

Author:

Poletto Murillo Ricardo Lombardo1,Callegari Bruna1,Ferreira Eduardo Bellini1ORCID,Branciforti Marcia Cristina1ORCID

Affiliation:

1. Department of Materials Engineering Sao Carlos School of Engineering, University of Sao Paulo, Avenida Trabalhador San‐Carlense Sao Carlos Brazil

Abstract

AbstractThis study evaluated the influence of adding borosilicate residue (BS) as a flame retardant in polypropylene (PP) and natural fiber composites. The natural fibers used in this study come from the residue of the carpet industry, which is composed of PP and jute fibers (JT), while the PP used as the polymer matrix is postindustrial recycled material. The composites were produced by corotational twin‐screw extrusion and injection molding to obtain the test specimens. A coating process was carried out to add the water‐soluble fraction of BS to the surface of the compositions that did not receive it through incorporation during processing. To characterize the composites, flammability tests, thermogravimetric analysis (TGA), tensile strength test, and morphological analysis by scanning electron microscope (SEM) were performed. The addition of only 2 wt% BS content induces an increase in thermal stability of 32 and 109°C for composites with and without natural fibers, respectively. The addiction of 20 wt% BS elevates the elastic modulus up to 27% of the composites with and without natural fibers. The BS characterization indicates that it could be applied as a flame retardant when applied as coating methods using the water‐soluble fraction of BS, reducing the burning rate up to 92%. Flammability results are similar for formulations with and without natural fibers, indicating that the natural fibers did not influence the proposed flame retardant. The findings suggest that BS coating is a potential solution to improve the properties of natural fiber‐reinforced polymer composites while also promoting waste recycling. This approach produces composites with improved flammability, thermal stability, and mechanical properties, making them suitable for various end applications.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3