Aedes albopictus microbiome derives from environmental sources and partitions across distinct host tissues

Author:

Seabourn Priscilla S.12ORCID,Weber Danya E.2,Spafford Helen13,Medeiros Matthew C. I.24ORCID

Affiliation:

1. Plant and Environmental Protection Sciences Honolulu Hawaii USA

2. Pacific Biosciences Research Center University of Hawaii Honolulu Hawaii USA

3. Department of Primary Industries and Regional Development South Perth Western Australia Australia

4. Center for Microbiome Analysis through Island Knowledge and Investigation University of Hawaii at Manoa Honolulu Hawaii USA

Abstract

AbstractThe mosquito microbiome consists of a consortium of interacting microorganisms that reside on and within culicid hosts. Mosquitoes acquire most of their microbial diversity from the environment over their life cycle. Once present within the mosquito host, the microbes colonize distinct tissues, and these symbiotic relationships are maintained by immune‐related mechanisms, environmental filtering, and trait selection. The processes that govern how environmental microbes assemble across the tissues within mosquitoes remain poorly resolved. We use ecological network analyses to examine how environmental bacteria assemble to form bacteriomes among Aedes albopictus host tissues. Mosquitoes, water, soil, and plant nectar were collected from 20 sites in the Mānoa Valley, Oahu. DNA was extracted and associated bacteriomes were inventoried using Earth Microbiome Project protocols. We find that the bacteriomes of A. albopictus tissues were compositional taxonomic subsets of environmental bacteriomes and suggest that the environmental microbiome serves as a source pool that supports mosquito microbiome diversity. Within the mosquito, the microbiomes of the crop, midgut, Malpighian tubules, and ovaries differed in composition. This microbial diversity partitioned among host tissues formed two specialized modules: one in the crop and midgut, and another in the Malpighian tubules and ovaries. The specialized modules may form based on microbe niche preferences and/or selection of mosquito tissues for specific microbes that aid unique biological functions of the tissue types. A strong niche‐driven assembly of tissue‐specific microbiotas from the environmental species pool suggests that each tissue has specialized associations with microbes, which derive from host‐mediated microbe selection.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3