Affiliation:
1. Department of Entomology Texas A&M University College Station TX USA
2. Bayer Crop Science St. Louis MO USA
3. Department of Entomology University of Minnesota Saint Paul MN USA
Abstract
AbstractBACKGROUNDPyramiding Bt proteins is a key strategy to delay insect resistance development. However, the durability of pyramided Bt crops for controlling insect pests is threatened by cross‐resistance among Bt proteins, which can ultimately contribute to resistance development. The corn earworm, Helicoverpa zea, is a major agricultural pest of pyramided Bt crops. Previous studies have examined cross‐resistance and redundant killing of Cry resistance in H. zea, but such information is lacking for Vip3Aa resistance in this pest. Here, we evaluated cross‐resistance and redundant killing of Vip3Aa‐resistant H. zea to purified Bt proteins, as well as Bt corn and Bt cotton.RESULTSDiet bioassays demonstrated high susceptibility of Vip3Aa‐resistant H. zea to Cry1Ac, Cry1A.105, and Cry2Ab2 purified proteins. No Vip3Aa‐susceptible, ‐heterozygous, or ‐resistant H. zea could survive on pyramided Bt corn containing Cry1 and/or Cry2 proteins. Complete redundant killing was observed in pyramided Bt corn containing Cry1 and/or Cry2 proteins against Vip3Aa resistance in H. zea. Vip3Aa‐susceptible, ‐heterozygous, and ‐resistant H. zea exhibited survival rates ranging from 0.0% to 22.5% on pyramided Bt cotton with Cry1 and/or Cry2 proteins. Incomplete to complete redundant killing was observed for Vip3Aa‐resistant H. zea on pyramided Bt cotton containing Cry1 and/or Cry2 proteins.CONCLUSIONOur findings indicate that Vip3Aa‐resistant H. zea does not exhibit positive cross‐resistance to Cry1 or Cry2 proteins. In addition, most pyramided Bt crops showed complete or nearly complete redundant killing of Vip3Aa‐resistant H. zea. These results indicate that a pyramiding strategy would often be effective for managing Vip3Aa resistance in regions of the United States where H. zea has not evolved resistance to Cry1 and Cry2 toxins. © 2023 Society of Chemical Industry.
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献