Machine Learning Orchestrating the Materials Discovery and Performance Optimization of Redox Flow Battery

Author:

Tang Lina12,Leung Puiki12,Xu Qian3,Flox Cristina4ORCID

Affiliation:

1. A National Innovation Center for Industry-Education Integration of Energy Storage Technology School of energy and power engineering Chongqing 400044 China

2. Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, MOE Chongqing University Chongqing 400030 China

3. Institute for Energy Research Jiangsu University Zhenjiang 212013 China

4. Institut de Ciencia de Materials de Barcelona, CSIC Campus UAB Barcelona 08193 Spain

Abstract

AbstractThis review exploits the crucial role of computational methods in discovering and optimizing materials for redox flow batteries (RFBs). Integration of high‐throughput computational screening (HTCS) and machine learning (ML) accelerates materials discovery, guided by algorithms categorizing RFBs. A collaborative exploration, spanning macroscopic to mesoscopic scales, combines quantum machine learning with reinforcement learning, transfer learning, time series analysis, Bayesian optimization, active learning and various generative models. The collaborative integration of ML with computational techniques and experimental methods, anchored in experimentally validated Density Functional Theory (DFT) calculations and molecular dynamics (MD) simulations, proves indispensable for cost‐effective RFBs. Data collection and feature engineering are explored, emphasizing the integration of optimization goals and precise data collection within the ML framework. Feature analysis importance is highlighted, utilizing methods such as the filter, embedded, wrapper and deep learning methods for efficient energy materials exploration. Computational perspectives on materials features and operating conditions encompass membrane characteristics, fluid dynamics, temperature dependence and pressure sensitivity. Time‐dependent features and ML‐generated insights are crucial for understanding cycling performance intricacies, providing a comprehensive understanding of RFB materials.

Funder

National Natural Science Foundation of China

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3