Defective Carbon for Next‐Generation Stationary Energy Storage Systems: Sodium‐Ion and Vanadium Flow Batteries

Author:

McArdle Sophie1,Bauer Felix2,Granieri Simone Fiorini345,Ast Marius2,Di Fonzo Fabio34,Marshall Aaron T.1,Radinger Hannes6ORCID

Affiliation:

1. Department of Chemical and Process Engineering The MacDiarmid Institute of Advanced Materials and Nanotechnology University of Canterbury Christchurch 8140 New Zealand

2. Institute for Applied Materials Karlsruhe Institute for Technology Eggenstein-Leopoldshafen 76344 Germany

3. Italian Institute of Technology Milano (MI) via rubattino 81 20134 Italy

4. X-nano srl Milano (MI) via rubattino 81 20134 Italy

5. Politecnico di Milano Department of Energy via lambruschi 4 Milano (MI) 20156 Italy

6. Siemens AG Schuckertstr. 2 91058 Erlangen Germany

Abstract

AbstractThis review examines the role of defective carbon‐based electrodes in sodium‐ion and vanadium flow batteries. Methods for introducing defects into carbon structures are explored and their effectiveness in improving electrode performance is demonstrated. In sodium‐based systems, research focuses primarily on various precursor materials and heteroatom doping to optimise hard carbon electrodes. Defect engineering increases interlayer spacing, porosity, and changes the surface chemistry, which improves sodium intercalation and reversible capacities. Heteroatom functionalisation and surface modification affect solid electrolyte interface formation and coulombic efficiencies. For flow batteries, post‐fabrication electrode enhancement methods produce defects to improve electrode kinetics, although these methods often introduce oxygen functional groups as well, making isolation of defect effects difficult. Continued research efforts are key to developing carbon‐based electrodes that can meet the unique challenges of future battery systems.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3