Ultrathin (15 nm) Carbon Sheets with Surface Oxygen Functionalization for Efficient Pseudocapacitive Na‐ion Storage

Author:

Etacheri Vinodkumar12,Maça Rudi Ruben23,Avvaru Venkata Sai23,Hong Chulgi Nathan1,Alazemi Abdullah4,Pol Vilas G.1ORCID

Affiliation:

1. Davidson School of Chemical Engineering Purdue University 480 Stadium Mall Drive West Lafayette Indiana 47907 USA

2. Electrochemistry Division IMDEA Materials Institute Calle Eric Kandel 2 Getafe 28906 Madrid Spain

3. Faculty of Science Autonoma University of Madrid, C/ Francisco Tomás y Valiente, 7 28049 Madrid Spain

4. School of Mechanical Engineering Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA

Abstract

AbstractDisordered carbon is the state of the art anode material for Na‐ion batteries due to their increased interlayer spacing and good electronic conductivity. However, its practical application is hindered by average specific capacity, poor rate performance, low coulombic efficiency and limited cycling stability. Herein, we report the superior pseudocapacitance enhanced Na‐ion storage of in situ surface functionalized carbon nanosheets. Anodes composed of ultrathin (~15 nm) carbon nanosheets demonstrated excellent reversible specific capacity (375 mAh/g at 25 mA/g), rate performance (150 mAh/g at 2 A/g), long‐term cycling performance (1000 cycles at 1 A/g) and coulombic efficiency (~100 %). Considerably higher pseudocapacitance (up to ~78 %) is also identified in this case compared to amorphous carbon particles. Spectroscopic and electrochemical studies proved Na‐ion intercalation in to the disordered carbon and pseudocapacitive storage driven by oxygen‐containing surface functional groups. Outstanding electrochemical performance is credited to the synergy between diffusion limited intercalation and pseudocapacitive surface Na‐ion storage. The demonstrated synthetic method of in situ functionalized carbon nanosheets is inexpensive and scalable. The strategy of functional group and morphology induced pseudocapacitive Na‐ion storage offer new prospects to design high‐performance Na‐ion battery electrodes.

Funder

IMDEA Materials Institute

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3