Affiliation:
1. Laboratorio de Investigación de Electroquímica Aplicada Facultad de Ciencias Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Rímac Lima Perú
2. Institut de Chimie Moléculaire de Reims (UMR CNRS 7312) University of Reims Champagne-Ardenne Champagne-Ardenne, Moulin de la Housse Reims 51687 France
Abstract
AbstractThere are plenty of evidence that consuming high levels of azo dyes, such as Tartrazine, Sunset Yellow, Allura Red, Ponceau 4R, Amaranth, Sudan, and Azorubine, is associated with serious health problems. Therefore, electrochemical sensors have been developed for their effective detection, also offering low cost, portability, and the fact that they do not require harmful solvents. They are customarily employed in several electrochemical techniques, including cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry. The most commonly employed materials in the manufacturing of electrochemical sensors are carbonaceous materials given their high stability, surface area, and conductivity. Employing these carbonaceous materials results in an enhanced sensitivity of electrochemical sensors when detecting azo dyes. To further improve the sensors, these materials are modified with metal oxides, polymers, polysaccharide, ionic liquids, and metal nanoparticles, allowing the detection of ultra‐sensitive traces of azo dyes. Therefore, this review provides an overview of the characteristics of modified carbonaceous materials and their applications for the detection of food azo dyes, along with a summary of the currently employed electroanalytical detection methods. Additionally, this review discusses the development of novel nanomaterials and their technological advances, while exploring their potential environmental and health impacts within the food industry.
Subject
Electrochemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献