Nanoelectrochemical Platform for Elucidating the Reaction between a Solid Active Material and a Dissolved Redox Species for Mediated Redox‐Flow Batteries

Author:

Santana Santos Carla1ORCID,Quast Thomas1ORCID,Ventosa Edgar2ORCID,Schuhmann Wolfgang1ORCID

Affiliation:

1. Analytical Chemistry- Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße. 150 44780 Bochum Germany

2. Department of Chemistry University of Burgos Pza. Misael Bañuelos s/n 09001 Burgos Spain

Abstract

AbstractMediated processes using a solid material, often called “solid booster”, have been proposed to increase the energy density in redox flow batteries (RFB). The strategy alters the energy storage in the dissolved redox species to a solid active material placed in a compartment of the device. Understanding the reaction kinetics of the dissolved redox mediator and the solid booster is crucial for proposing feasible pairs of solid boosters and dissolved redox mediators. We demonstrate a nanoelectrochemical methodology to monitor the reaction between the dissolved species in solution and the solid active material electrodeposited in recessed carbon nanoelectrodes. Our strategy overcomes issues inherent to standard methodologies, such as mass transport limitation, and evaluation of the intrinsic reactivity of the solid material. As a proof of concept, Prussian blue was electrodeposited in a recessed carbon nanoelectrode and used as a confined‐solid material platform to evaluate the reaction between the reduced form of Prussian blue and triiodide, . A high conversion rate of the solid booster was observed in the presence of μM concentrations of the dissolved redox species. The proposed nanoelectrode was successfully employed as a potentiometric sensor to monitor the evolution of the reaction with the dissolved active species.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3