Recent Progress and Prospects of MXene/Cellulose‐Based Composite Electrodes: A Sustainable Pathway towards Supercapacitor Application

Author:

Krishna Paul Tamal1ORCID,Parvez Md. Shohan1ORCID,Mashfik Ahmed Chowdhury1

Affiliation:

1. Department of Textile Engineering Khulna University of Engineering & Technology 9203 Khulna Bangladesh

Abstract

AbstractMXenes, a group of two‐dimensional (2D) metal carbides and nitrides, have emerged as promising electrode materials for supercapacitors. This is primarily attributed to their inherent metal‐like electrical conductivity, layered structure, surface redox reactivity, and superior pseudocapacitance through surface functional groups. Owing to its promising features, this material suffers from low mechanical strength, restacking, and unprecedented oxidation. As a result, balancing the electrochemical performance becomes challenging, eventually impeding its potential applications in lightweight, flexible supercapacitor applications. Recent strategies are centered on lighter and more stable filler materials to tackle these issues. Among these, cellulose is considered one of the most effective renewable materials because of its biocompatibility, thermal stability, high surface area, and mechanical reinforcement. Moreover, nanocellulose is capable of hosting other functional materials on its reactive surfaces, ensuring better ion accessibility, and can be used as an electrolyte separator membrane. This review paper aims to provide a comprehensive overview of recent advances in the fabrication strategy, deterministic parameters for capacitive energy‐storage devices, electrochemical behavior, and the performance of MXene/cellulose‐based electrodes in its three‐dimensional aspect (1D, 2D and 3D) for supercapacitor application. Lastly, this review will outline the challenges and prospects of MXene/cellulose‐based composite electrodes in real‐life supercapacitor applications.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3