Expanding the Applicability Domain of Machine Learning Model for Advancements in Electrochemical Material Discovery

Author:

Boonpalit Kajjana1ORCID,Kinchagawat Jiramet1ORCID,Namuangruk Supawadee2

Affiliation:

1. School of Information Science and Technology Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand

2. National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Innovation Cluster 2 Thailand Science Park, Khlong Nueng, Khlong Luang Pathum Thani 12120 Thailand

Abstract

AbstractMachine learning has gained considerable attention in the material science domain and helped discover advanced materials for electrochemical applications. Numerous studies have demonstrated its potential to reduce the resources required for material screening. However, a significant proportion of these studies have adopted a supervised learning approach, which entails the laborious task of constructing random training databases and does not always ensure the model‘s reliability while screening unseen materials. Herein, we evaluate the limitations of supervised machine learning from the perspective of the applicability domain. The applicability domain of a model is the region in chemical space where the structure‐property relationship is covered by the training set so that the model can give reliable predictions. We review methods that have been developed to overcome such limitations, such as the active learning framework and self‐supervised learning.

Funder

National Research Council of Thailand

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3