Elucidating the Influence of Intercalated Anions in NiFe LDH on the Electrocatalytic Behavior of OER: A Kinetic Study

Author:

Berger Maike1,Popa Ioana M.1,Negahdar Leila2ORCID,Palkovits Stefan1ORCID,Kaufmann Bastian3,Pilaski Moritz3ORCID,Hoster Harry4ORCID,Palkovits Regina1ORCID

Affiliation:

1. Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen 52074 Germany

2. School of Chemistry University College Dublin D04 N2E5 Dublin Ireland

3. Zentrum für BrennstoffzellenTechnik GmbH Duisburg 47057 Germany

4. Chair of Energy Technology University of Duisburg-Essen Duisburg 47048 Germany

Abstract

AbstractThe oxygen evolution reaction (OER) as one half‐cell reaction of electrochemical water splitting has a fundamental impact on water splitting efficiency and thus on the competitiveness of electrochemically generated hydrogen in the energy market. Nickel‐iron layered double hydroxides (NiFe LDH) are among the most promising electrocatalysts for efficient OER under alkaline conditions. Despite intensive research, correlations of the material properties and the resulting kinetically limiting surface processes are poorly investigated. This work focuses on the kinetic behavior of NiFe LDH catalysts containing different anions in the basal spacing in alkaline OER. Steady‐state Tafel plots, impedance measurements as well as reaction order plots were used to elucidate differences in the catalytic performance. All catalysts showed a dual Tafel behavior and fractional reaction orders. For kinetic modelling, the physisorbed hydrogen peroxide mechanism and Temkin adsorption model were adopted to fit experimental data. Our study showed that the intercalated anions affect the kinetics of rate determining steps. The hypophosphite intercalated LDH possessed the highest OER activity and the first step as rate determining. While for both carbonate and borate intercalated NiFe LDH, the second step proved to be rate determining in the low Tafel region, while the first step was found to be rate‐limiting in the high Tafel region.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3