Direct and TEMPO‐Mediated Electro‐Oxidation of 5‐(Hydroxymethyl)furfural in Organic and Hydro‐Organic Media

Author:

Vo Nhat Tam1,Cacciuttolo Quentin1,Pasquier David1,Larmier Kim1ORCID

Affiliation:

1. IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France

Abstract

AbstractBiomass‐derived 5‐hydroxymethyl furfural (5‐HMF) is a promising starting substrate for producing two high value‐added products 2,5‐diformylfuran (DFF) and 2,5‐furandicarboxylic acid (FDCA). DFF, which is produced by selectively oxidizing the hydroxymethyl group of 5‐HMF to an aldehyde group, has many applications in pharmaceuticals, macrocyclic ligands and fluorescent materials. Oxidizing both aldehyde and hydroxymethyl groups of 5‐HMF leads to FDCA, which is an important monomer in the production of a bioplastic polyethylene furanoate polymer. Electrochemical conversion of 5‐HMF is a potential route for sustainable chemical production of DFF and FDCA. In fact, using 2,2,6,6‐tetramethyl‐ piperidine‐1‐oxyl (TEMPO) as a redox mediator leads to a highly efficient and selective electro‐oxidation of 5‐HMF into FDCA in a basic buffer solution. In this report, the direct and TEMPO‐mediated electro‐oxidation of 5‐HMF was investigated in various organic and hydro‐organic media at room temperature. Direct electro‐oxidation leads to a low selective conversion of 5‐HMF to DFF (10 % of yield) and the formation of unwanted products such as formic acid and protoanemonin (90 % and 37 % of yield respectively) in acetonitrile. Electrocatalytic 5‐HMF conversion in the presence of TEMPO as a redox mediator achieved a near‐quantitative yield of DFF in acetonitrile and γ‐valerolactone. Importantly, we demonstrate the role of water in the conversion of aldehydes to carboxylic acids.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3