Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine

Author:

Honig Hilah C.12ORCID,Elbaz Lior12ORCID

Affiliation:

1. Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel

2. Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel

Abstract

AbstractPlatinum group metal‐free catalysts have been considered the most promising alternative for platinum‐based catalysts for the oxygen reduction reaction in fuel cells. Despite the significant advancement made in activity, their viability as fuel cell catalysts is still questionable due to their low durability. So far, deciphering the degradation mechanisms of this class of catalysts has been hampered by their undefined structure. Herein, we used a molecular model catalyst, iron‐phthalocyanine, featuring Fe−N4 active sites with resemblance to those in the more active Fe−N−C catalysts, and studied their degradation mechanisms. Based on X‐ray photoelectron spectroscopy and the electrochemical measurements, three main demetallation processes were identified: at potentials higher than 0.65 V vs. RHE, where the metal center is Fe3+, an electrochemical oxidation of the ligand ring is occurring, between 0.6 and 0.2 V vs. RHE, Fenton reagents are produced and attack the catalyst and support, and at lower voltages, where peroxide is produced by the catalyst and the carbon support. The combination of the different iron oxidation states together with the oxygen species directs to different degradation mechanisms. The decay rates obtained in the stability measurements establish what is mainly causing the loss of activity. Thereby, this model molecule can aid in understanding the degradation mechanisms of other platinum group metal‐free oxygen reduction reaction catalysts.

Funder

Ministry of Energy, Israel

Israel Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3