Affiliation:
1. Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nano-Structured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
Abstract
AbstractThe quest for alternatives to Pt as an oxygen reduction electrocatalyst, possessing high activity, stability, and abundant reserves, holds great significance for H2/O2 fuel cells. Recently, metal‐nitrogen‐carbon (M‐N‐C) electrocatalysts have garnered substantial attention as promising substitutes. These electrocatalysts not only exhibit well‐defined structures but also offer the flexibility to adjust the central metal atoms and coordination atoms. It is beneficial in elucidating the active sites during the catalytic process and in the design of highly active electrocatalysts. In this review, the real active site of M‐N‐C electrocatalyst‐driven ORR is investigated in depth by in situ characterization techniques such as X‐ray absorption spectroscopy, Raman spectroscopy, Fourier‐transform infrared spectroscopy. It′s worth noting that the catalytic activity of M‐N‐C electrocatalysts originates from the dynamic evolution of electrocatalyst structure. Subsequently, we review various synthetic strategies, including the wet chemistry method, spatial confinement, and template‐assisted method, aimed at the rational design of M‐N‐C electrocatalysts. Moreover, recent progresses of M‐N‐C electrocatalysts with varying configurations, encompassing single‐atom, and double‐atom electrocatalysts are discussed, Finally, summary and perspectives on the development of M‐N‐C are provided.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CuFe nanoparticles coupled Cu–Nx for enhancing oxygen reduction reaction;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-12