Modeling Planar Electrodes and Zero‐Gap Membrane Electrode Assemblies for CO2 Electrolysis

Author:

Ehlinger Victoria M.12ORCID,Lee Dong Un3,Lin Tiras Y.12ORCID,Duoss Eric B.24,Baker Sarah E.56,Jaramillo Thomas F.37,Hahn Christopher56ORCID

Affiliation:

1. Computational Engineering Division Lawrence Livermore National Laboratory Livermore CA 94550 USA

2. Center for Engineered Materials and Manufacturing Lawrence Livermore National Laboratory Livermore CA 94550 USA

3. SUNCAT Center for Interface Science and Catalysis Department of Chemical Engineering Stanford University Stanford CA 94305 USA

4. Engineering Principal Associate Directorate Lawrence Livermore National Laboratory Livermore CA 94550 USA

5. Materials Science Division Lawrence Livermore National Laboratory Livermore CA 94550 USA

6. Laboratory for Energy Applications for the Future Lawrence Livermore National Laboratory Livermore CA 94550 USA

7. SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

Abstract

AbstractMultiphysics modeling enables probing of conditions inside a CO2 electrolyzer that are difficult to measure, such as local concentrations and pH, as well as rapid testing of possible design changes. A one‐dimensional model for a zero‐gap membrane electrode assembly (MEA) CO2 electrolyzer was developed with the assumption that catalyst layers interact with the membrane ionomer such that the ionomer affects the underlying kinetics. The kinetics for bicarbonate reacting to form hydrogen are fit using a planar electrode model for silver with an ionomer coating. The MEA model results are validated against experimental studies for current density and product selectivity. Flooding of the cathode is modeled using saturation curves, and results show that blocked pores in the microporous layer play a significant role in limiting the mass transport at high potentials (>2.8 V). Sensitivity studies showed that CO Faradaic efficiency can be increased by decreasing catalyst layer thickness and porosity, and decreasing KHCO3 concentration.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3