Comparative Proton Coupled Electron Transfer at Glassy Carbon and Boron‐Doped Diamond Electrodes

Author:

Neill Shane P. O.1,Martínez‐Aviñó Adrià1,Keene Charlie2,Hassan Sammi2,Houston Catriona1,Denuga Shekemi1,Farrell Emer B.1,Gil‐Ramírez Guzmán2,Johnson Robert P.1ORCID

Affiliation:

1. School of Chemistry University College Dublin Belfield Dublin 4 Ireland

2. School of Chemistry University of Lincoln Lincoln LN6 7DL UK

Abstract

AbstractThe surface modification of carbon electrodes is an area of great interest in both fundamental and applied electrochemistry. Herein we demonstrate a reliable route for the modification of sp3 boron‐doped diamond electrodes through a diazonium reduction and subsequent solid phase synthesis to produce a stable, immobilised layer of surface‐bound anthraquinone. The electron transfer kinetics, surface coverage, and pKa of the immobilised anthraquinone were investigated and compared to those of anthraquinone immobilised via an identical synthetic route onto a glassy carbon sp2 interface. The pKa of anthraquinone was found to be 9.1 on glassy carbon but 6.6 on boron‐doped diamond. Differences in pKa were observed despite the use of identical surface modification strategies and the achievement of comparable surface densities for both types of electrode, and are attributed to the differing dielectric properties of the surface‐modified layers atop either an sp2 or sp3 interface. These results highlight how the underlying substrate can greatly influence the fundamental chemical and electrochemical properties of immobilised molecules, as well as the need for caution when applying well‐established sp2 solid phase synthesis methodologies to sp3 substrates.

Funder

Science Foundation Ireland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3