Is Unsupervised Dimensionality Reduction Sufficient to Decode the Complexities of Electrochemical Impedance Spectra?

Author:

Makogon Aleksei1,Kanoufi Frederic1,Shkirskiy Viacheslav1ORCID

Affiliation:

1. Université Paris Cité ITODYS CNRS Paris 75013 France

Abstract

AbstractAs electrochemical research undergoes rapid technological progression, the acquisition of substantial amounts of electrochemical impedance spectra (EIS) becomes increasingly feasible. Yet, this advancement introduces intricate challenges in data processing, automation, and interpretation. This paper delves into the sufficiency of unsupervised machine learning (ML) and in particular dimensionality reduction methods in decoding EIS complexities, examining its strengths, limitations, and potential pathways for optimization. As we navigated the intricacies of non‐linear dimensionality reduction, spotlighting t‐distributed stochastic neighbor embedding (t‐SNE) and uniform manifold approximation and projection (UMAP) algorithms, a pattern emerged: these techniques excel at categorizing divergent impedance spectra but show limitations when faced with analogous circuit configurations, especially those substituting a capacitor with a constant phase element. This observation not only underscores a limitation but also accentuates that unsupervised ML approaches, alone, may not fully unravel the nuances of EIS spectra. In the concluding section of our manuscript, we discuss the implications of this finding from a practical standpoint, particularly for electrochemists seeking to apply these methods in their work.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3