Recent Progress on Multifunctional Electrolyte Additives for High‐Energy‐Density Li Batteries – A Review

Author:

Lei Yue1,Wang Kaifeng1,Jiang Sen1,Xu Xin1,Zheng Junzi1,Yin Junying2ORCID,Gao Yunfang1ORCID

Affiliation:

1. College of Chemical Engineering Zhejiang University of Technology 310014 Hangzhou Zhejiang P. R. China

2. College of Chemical Engineering and Safety Binzhou University 256603 Binzhou Shandong P. R. China

Abstract

AbstractThe improvement of the safety, specific energy, cycle life and the cost reduction of Li‐ion batteries are hot research topics. Now, in the pursuit of high energy density, the employed high‐energy‐density cathode/anode materials and the increased operation voltage challenge the prevalent electrolyte formula, like the existing ester and ether electrolytes cannot withstand the high‐voltage operation and high‐capacity anode such as lithium (Li), silicon (Si) and silicon‐graphite (Si−C) composite anode. It is recognized that stable electrolyte‐electrode interfaces can avoid the electrolytes side reactions and protect the electrode materials. Up to now, various additives have been developed to modify the electrode‐electrolyte interfaces, such as famous 4‐fluoroethylene carbonate, vinylene carbonate and lithium nitrate, and the LIBs and lithium metal batteries (LMBs) performances have been improved greatly. However, the lifespan of the higher‐energy‐density batteries with Li/Si/Si−C anode and high‐nickel layer oxides cathode materials cannot meet the request due to the lack of ideal electrolyte formula. In this review, we present a comprehensive and in‐depth overview on the electrolyte additives, especially focused on multifunctional additives, the reaction mechanisms of various additives and fundamental design. Finally, novel insights, promising directions and potential solutions for the multifunctional electrolyte additives are proposed to motivate high‐energy‐density Li battery chemistries.

Funder

Zhejiang Xinmiao Talents Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3