In Situ Determination of the Potential Distribution within a Copper Foam Electrode in a Zinc‐Air/Silver Hybrid Flow Battery

Author:

Genthe Sascha1234ORCID,Arenas Luis F.1234ORCID,Becker Maik1234ORCID,Kunz Ulrich1234,Turek Thomas1234ORCID

Affiliation:

1. Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany

2. Present Address: Robert Bosch GmbH Zentrum für Forschung und Vorausentwicklung Robert-Bosch-Campus 1 71272 Renningen Germany

3. Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19 A 38640 Goslar Germany

4. >Present Address: Research Group Applied Electrochemistry & Catalysis University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium

Abstract

AbstractThis work describes a novel methodology for measuring the potential distribution within the porous copper foam electrode of a zinc‐air/silver hybrid (ZASH) flow battery by using local potential probes. The suitability of dynamic hydrogen electrodes (DHEs) and a quasi‐reference electrode as probes is evaluated, with the latter chosen in view of stability. Liquid and solid‐phase potentials are recorded at varying applied current densities over multiple charge‐discharge cycles. Various zinc structures are found within specific overpotential ranges, with moss‐like structures appearing between 7.8 mV and 13.2 mV and the desired boulder structures in the range of 22 mV to 100 mV. Regardless of the current density, the highest liquid‐phase potentials are always measured in the outermost region of the porous foam near to the separator. In practice, this means that increasing the thickness of the copper foam over about 5 mm does not provide significant performance benefits. Conversely, solid‐phase potentials across the copper foam remain nearly uniform, resulting in negligible effects on local overpotential. The presented technique provides unique insights into the behavior of porous electrodes in electrochemical energy conversion technologies, facilitating the determination of the optimal properties for maximum efficiency, such as electrode thickness.

Funder

Alexander von Humboldt-Stiftung

Technische Universität Clausthal

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3