Affiliation:
1. Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA) Alava Technology Park Albert Einstein 48 01510 Miñano Spain
2. Department of Organic and Inorganic Chemistry University of the Basque Country (UPV/EHU) Barrio Sarriena s/n 48940 Leioa Spain
3. CEGASA Energía SLU Marie Curie, 1, Parque Tecnológico de Álava 01510 Miñano Spain
4. Ikerbasque, Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
Abstract
AbstractState‐of‐the‐art perovskite‐based electrocatalysts for zinc−air batteries (ZABs) may include one or more Critical Raw Materials (CRMs) like Co, Ru, and rare earth elements, for oxygen reduction/evolution reactions. Under the warnings described by the CRMs Act in Europe, future research in this field must limit the use of these elements, find more sustainable formulations, and better design/integration strategies to trade off costs, supply, and performances. In this benchmarking study, three main perovskites, i. e., LaNiO3‐δ (LNO), LaMnO3+δ (LMO), and LaMn0.5Ni0.5O3 (LMNO), are studied as quasi‐CRM‐free benchmarks and integrated with a novel gel electrolyte from a natural biopolymer in primary and secondary ZABs. By comparing literature performances based on the number of total/active site CRMs for the first time, these reference perovskites showed Zn utilizations >90 % in primary ZABs, with LMO and LMNO approaching 94 % at 2 mA/cm2, the highest result in the field. In secondary ZABs, LMO demonstrated limited cyclability (62 cycles), while LMNO had a moderate number of cycles (117 cycles) and the highest round‐trip efficiency (54.3 %), while LNO presented the lowest charge potential (2.04 V) and longer cyclability (455 cycles). This work demonstrates encouraging performance with fewer CRMs and proper integration in more sustainable ZABs, opening the way to future CRM‐free perovskites.
Subject
Electrochemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献