Oxidative Depolymerisation of Kraft Lignin: From Fabrication of Multi‐Metal‐Modified Electrodes For Vanillin Electrogeneration via Pulse Electrolysis To High‐Throughput Screening of Multi‐Metal Composites

Author:

Brix Ann Cathrin1,Krysiak Olga A.1,Cechanaviciutè Ieva A.1,Bjelovučić Gal1,Banko Lars2,Ludwig Alfred23,Schuhmann Wolfgang1ORCID

Affiliation:

1. Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Germany

2. Chair for Materials Discovery and Interfaces Institute for Materials Faculty of Mechanical Engineering Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Germany

3. ZGH Ruhr-Universität Bochum Universitätsstraße 150 44780 Bochum Germany

Abstract

AbstractThe production of green hydrogen may be greatly aided by the use of an alternative anode reaction replacing oxygen evolution to increase energy efficiency and concomitantly generate value‐added products. Lignin, a major component of plant matter, is accumulated in large amounts in the pulp and paper industry as waste. It has excellent potential as a source of aromatic compounds and can be transformed into the much more valuable aroma chemical vanillin by electrochemical depolymerisation. We used a flow‐through model electrolyser to evaluate electrocatalyst‐modified Ni foam electrodes prepared by a scalable spray‐polymer preparation method for oxidative lignin depolymerisation. We demonstrate how pulsing, i. e. continuously cycling between a lower and a higher applied current, increases the amount of formed vanillin while improving the energy efficiency. Further, we present a scanning droplet cell‐assisted high‐throughput screening approach to discover suitable catalyst materials for lignin electrooxidation considering that a suitable electrocatalyst should exhibit high activity for lignin depolymerization and simultaneously a low activity for vanillin oxidation and oxygen evolution. Combining electrosynthesis and electrocatalysis can aid in developing new customised materials for electrochemical processes of potential industrial interest.

Publisher

Wiley

Subject

Electrochemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3