Affiliation:
1. Institute of Physical Chemistry TU Bergakademie Freiberg Leipziger Str. 29 09599 Freiberg Germany
2. Institute of Applied Physics TU Bergakademie Freiberg Leipziger Str. 23 09599 Freiberg Germany
3. Institute of Inorganic Chemistry TU Bergakademie Freiberg Leipziger Str. 29 09599 Freiberg Germany
4. Center for Efficient High Temperature Processes and Materials Conversion ZeHS TU Bergakademie Freiberg Winklerstr. 5 09599 Freiberg Germany
5. Freiberg Center for Water Research ZeWaF TU Bergakademie Freiberg 09599 Freiberg Germany
Abstract
AbstractThe controlled growth of surface‐modifying polymer films by electrodeposition often fails because of the lack of redox activity of these compounds. Here, electroactive complexants help to electrodeposit non‐electroactive polymers. Hence, we investigate the counterion‐induced electrodeposition of polyelectrolytes: three quaternized poly(N,N‐dialkylaminoethyl methacrylate)s (qPDAAEMA), in particular their methyl, ethyl, and isopropyl derivatives (i. e. qPDMAEMA, qPDEAEMA, and qPDPAEMA), provide transparent solutions in the presence of hexacyanoferrate(II) (ferrocyanide) at specific concentration windows of the KCl supporting electrolyte. Below a certain KCl concentration, insolubility dominates irrespective of the hexacyanoferrate valency, whilst above an upper threshold, full solubility is observed. Between these limits, oxidation reversibly electrodeposits polymer/hexacyanoferrate(III) (ferricyanide) complexes. Hydrodynamic voltammetry (and data analysis using in‐house software) provides access to the deposition efficiency (DE). qPDEAEMA with ethyl substituents shows highest DEs; larger or smaller substituents fall short because of a balance between “hydrophobicity” and charge separation, shifting the window toward smaller salt concentrations with increasing alkyl size. We always observe a DE maximum close to the minimum salt concentration, whilst electrochemical quartz crystal microbalance (EQCM) measurements indicate a change in film water content close to the maximum. These effects, being also discussed in terms of polymer conformation, can direct the future engineering of electroassisted coatings.
Subject
Electrochemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献