Electrochemical Impedance Spectroscopy of Li‐S Batteries: Effect of Atomic Vanadium‐ and Cobalt‐Modified Ketjen Black‐Sulfur Cathode, Sulfur Loading, and Electrolyte‐to‐Sulfur Ratio

Author:

Fazal Hira123,Eroglu Damla1ORCID,Kilic Aysegul1,Ali Nazakat24,Yan Changyu2,Zai Jiantao2,Qian Xuefeng2

Affiliation:

1. Department of Chemical Engineering Bogazici University Istanbul 34342 Turkey

2. Department of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China

3. Present Address: School of Metallurgy and Materials University of Birmingham Birmingham B15 2TT UK

4. Present Address: Department of Chemistry University of Oxford Oxford OX1 3QR UK

Abstract

AbstractThe polysulfide shuttle mechanism and insulating characteristics of sulfur and discharge products are the two major drawbacks of Li−S batteries. These increase internal cell resistances, resulting in low battery performance and life. In this study, we investigate the effect of cathode material on the cell resistances by preparing two different cathodes: by encapsulating sulfur (S) with pure Ketjen black (KBS) and with atomic vanadium and cobalt‐modified Ketjen black (VCKBS). In addition to the cathode material, the influence of crucial cell design parameters, namely electrolyte‐to‐sulfur (E/S) ratio and sulfur loading, on the cell resistances and battery performance is also compared. Electrochemical impedance spectroscopy (EIS) is applied to determine the individual cell resistances, whereas a system‐level performance model is used to estimate the system‐level specific energies and energy densities. The comparison of the cathodes shows that VCKBS significantly improves both cell‐ and system‐level performances, which are attributed to a significant decrease in cell resistances. The cells with higher sulfur loadings and lower E/S ratios show poorer performance for both cathodes. On the other hand, an E/S ratio of 6 mg L−1 can result in high cell‐ and system‐level performances for the VCKBS cathode.

Funder

Istanbul Kalkinma Ajansi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3