Electron Transfer of Cellobiose Dehydrogenase in Polyethyleneimine Films

Author:

Karnpakdee Kwankao1ORCID,Kracher Daniel2ORCID,Ludwig Roland1ORCID

Affiliation:

1. Department of Food Science and Technology BOKU-University of Natural Resources and Life Sciences Muthgasse 11 1190 Vienna Austria

2. Institute of Molecular Biology Graz University of Technology Petersgasse 14 8010 Graz Austria

Abstract

AbstractCellobiose dehydrogenase (CDH) is applied as a bioelectrocatalyst in biosensors because its mobile cytochrome domain is capable of direct electron transfer. This study investigates the electron transfer mechanism of CDH molecules embedded in the polycation polyethyleneimine (PEI), which has been reported as a current‐boosting component of CDH‐based biosensors. By immobilizing different concentrations of CDH and its isolated cytochrome domain in PEI films, we found that increasing concentrations of cytochrome enhanced the film conductivity (up to 251±8 mS cm−1) through improved electron transfer between the protein redox centers. The increased electrical conductivity of the film contacts CDH molecules at a greater distance from the electrode. The cross‐linker poly(ethylene glycol) diglycidyl ether improves the packing and contacting of the cytochrome domains, whereas glutaraldehyde reduces the current obtained. Deglycosylation of CDH enhances the conductivity of enzyme‐polymer films by up to 34 %, implying a higher number of productive electron‐hopping events between cytochrome domains due to enhanced mobility or reduced shielding. By balancing negative charges on the CDH surface at neutral and alkaline pH, PEI increases the interdomain electron transfer and the electrical film conductivity. The resulting increased current output is relevant for in vivo bioanalytical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3