Affiliation:
1. Department of Ultrasound, Beijing Friendship Hospital Capital Medical University Beijing China
2. Department of Biomedical Engineering, School of Medicine Tsinghua University Beijing China
Abstract
ObjectiveThe purpose of this study is to detect the hemodynamic changes of microvessels in the early stage of diabetic kidney disease (DKD) and to test the feasibility of ultrasound localization microscopy (ULM) in early diagnosis of DKD.MethodsIn this study, streptozotocin (STZ) induced DKD rat model was used. Normal rats served as the control group. Conventional ultrasound, contrast‐enhanced ultrasound (CEUS), and ULM data were collected and analyzed. The kidney cortex was divided into four segments, which are 0.25–0.5 mm (Segment 1), 0.5–0.75 mm (Segment 2), 0.75–1 mm (Segment 3), and 1–1.25 mm (Segment 4) away from the renal capsule, respectively. The mean blood flow velocities of arteries and veins in each segment were separately calculated, and also the velocity gradients and overall mean velocities of arteries and veins. Mann–Whitney U test was used for comparison of the data.ResultsQuantitative results of microvessel velocity obtained by ULM show that the arterial velocity of Segments 2, 3, and 4, and the overall mean arterial velocity of the four segments in the DKD group are significantly lower than those in the normal group. The venous velocity of Segment 3 and the overall mean venous velocity of the four segments in the DKD group are higher than those in the normal group. The arterial velocity gradient in the DKD group is lower than that in the normal group.ConclusionULM can visualize and quantify the blood flow and may be used for early diagnosis of DKD.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献