Utility of the food colorant erythrosine B as an effective green probe for quantitation of the anticancer sunitinib. Application to pharmaceutical formulations and human plasma

Author:

El Sharkasy Mona E.1ORCID,Tolba Manar M.1ORCID,Belal Fathalla1,Walash Mohamed I.1,AboShabana Rasha1ORCID

Affiliation:

1. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt

Abstract

AbstractSunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and gastrointestinal stromal tumors. In this study, two spectroscopic methods, spectrofluorometric and spectrophotometric, were utilized to quantify sunitinib in different matrices. In method I, the native fluorescence of erythrosine B was quenched by forming ion‐pair complex with increasing quantities of sunitinib. This approach was utilized for measuring sunitinib in its dosage forms and spiked plasma. After excitation at 528 nm, the quenching of fluorescence is linearly related to the concentration across the range of 0.05–0.5 μg mL−1 at 550 nm in Britton–Robinson buffer (pH 4.0), with a correlation value of 0.9999 and a high level of sensitivity with detection limit down to 10 ng mL−1. Method II relies on spectrophotometric measurements of the produced complex at 550 nm across a range of 0.5–10.0 μg mL−1, with good correlation value of 0.9999. This method has a detection limit down to 0.16 μg mL−1. The proposed methodologies were validated according to International Conference on Harmonization (ICH) guidelines with satisfactory results. The stoichiometry of the reaction was determined through the application of Job's method, while the mechanism of quenching was investigated by employing the Stern–Volmer plot. The designated methods were used to estimate sunitinib in its capsules and in spiked human plasma. Additionally, the statistical analysis of the data revealed no substantial differences when compared to previous reported spectroscopic method. Green assessment tools provide further details about the eco‐friendly nature of the methods.

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3