Estimating number of European eel (Anguilla anguilla) individuals using environmental DNA and haplotype count in small rivers

Author:

Halvorsen Silje1ORCID,Korslund Lars1,Mattingsdal Morten1,Slettan Audun1

Affiliation:

1. Faculty of Engineering and Science University of Agder Kristiansand Norway

Abstract

AbstractKnowledge about population genetic data is important for effective conservation management. Genetic research traditionally requires sampling directly from the organism, for example tissue, which can be challenging, time‐consuming, and harmful to the animal. Environmental DNA (eDNA) approaches offer a way to sample genetic material noninvasively. In attempts to estimate population size of aquatic species using eDNA, researchers have found positive correlations between biomass and eDNA concentrations, but the approach is debated because of variations in the production and degrading of DNA in water. Recently, a more accurate eDNA‐approach has emerged, focusing on the genomic differences between individuals. In this study, we used eDNA from water samples to estimate the number of European eel (Anguilla anguilla) individuals by examining haplotypes in the mitochondrial D‐loop region, both in a closed aquatic environment with 10 eels of known haplotypes and in three rivers. The results revealed that it was possible to find every eel haplotype in the eDNA sample collected from the closed environment. We also found 13 unique haplotypes in the eDNA samples from the three rivers, which probably represent 13 eel individuals. This means that it is possible to obtain genomic information from European eel eDNA in water; however, more research is needed to develop the approach into a possible future tool for population quantification.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3