Nonsynonymous mutations in VEGF receptor binding domain alter the efficacy of bevacizumab treatment

Author:

Ahamed Ashif1ORCID,Samanta Arijit2ORCID,Alam Syed Sahajada Mahafujul2ORCID,Mir Showkat Ahmad3ORCID,Jamil Zarnain2ORCID,Ali Safdar4ORCID,Hoque Mehboob2ORCID

Affiliation:

1. Department of Zoology Netaji Subhas Open University West Bengal India

2. Applied Biochemistry Laboratory, Department of Biological Sciences Aliah University Kolkata India

3. School of Life Sciences Sambalpur University Jyoti Vihar Odisha India

4. Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences Aliah University Kolkata India

Abstract

AbstractVascular endothelial growth factor (VEGF) mediated angiogenesis is crucial for tumor progression. Isoforms of VEGF bind to different VEGF receptors (VEGFRs) to initiate angiogenesis specific cellular signaling. Inhibitors that target both the receptors and ligands are in clinical use to impede angiogenesis. Bevacizumab, a monoclonal antibody (mAb) approved by the Food and Drug Administration (FDA), binds in the VEGF receptor binding domain (RBD) of all soluble isoforms of VEGF and inhibits the VEGF‐VEGFR interaction. Bevacizumab is also used in combination with other chemotherapeutic agents for a better therapeutic outcome. Understanding the intricate polymorphic character of VEGFA gene and the influence of missense or nonsynonymous mutations in the form of nonsynonymous polymorphisms (nsSNPs) on RBD of VEGF may aid in increasing the efficacy of this drug. This study has identified 18 potential nsSNPs in VEGFA gene that affect the VEGF RBD structure and alter its binding pattern to bevacizumab. The mutated RBDs, modeled using trRosetta, in addition to the changed pattern of secondary structure, post translational modification and stability compared to the wild type, have shown contrasting binding affinity and molecular interaction pattern with bevacizumab. Molecular docking analysis by ClusPro and visualization using PyMol and PDBsum tools have detected 17 nsSNPs with decreased binding affinity to bevacizumab and therefore may impact the treatment efficacy. Whereas VEGF RBD expressed due to rs1267535717 (R229H) nsSNP of VEGFA has increased affinity to the mAb. This study suggests that genetic characterization of VEGFA before bevacizumab mediated cancer treatment is essential in predicting the appropriate efficacy of the drug, as the treatment efficiency may vary at individual level.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3