Measuring drug similarity using drug–drug interactions

Author:

Lv Ji12,Liu Guixia12ORCID,Ju Yuan3,Huang Houhou4,Sun Ying5

Affiliation:

1. College of Computer Science and Technology Jilin University Changchun China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China

3. Sichuan University Library Sichuan University Chengdu China

4. College of Chemistry Jilin University Changchun China

5. Department of Respiratory Medicine The First Hospital of Jilin University Changchun China

Abstract

AbstractCombination therapy is a promising approach to address the challenge of antimicrobial resistance, and computational models have been proposed for predicting drug–drug interactions. Most existing models rely on drug similarity measures based on characteristics such as chemical structure and the mechanism of action. In this study, we focus on the network structure itself and propose a drug similarity measure based on drug–drug interaction networks. We explore the potential applications of this measure by combining it with unsupervised learning and semi‐supervised learning approaches. In unsupervised learning, drugs can be grouped based on their interactions, leading to almost monochromatic group–group interactions. In addition, drugs within the same group tend to have similar mechanisms of action (MoA). In semi‐supervised learning, the similarity measure can be utilized to construct affinity matrices, enabling the prediction of unknown drug–drug interactions. Our method exceeds existing approaches in terms of performance. Overall, our experiments demonstrate the effectiveness and practicability of the proposed similarity measure. On the one hand, when combined with clustering algorithms, it can be used for functional annotation of compounds with unknown MoA. On the other hand, when combined with semi‐supervised graph learning, it enables the prediction of unknown drug–drug interactions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3