An hp‐adaptive multi‐element stochastic collocation method for surrogate modeling with information re‐use

Author:

Galetzka Armin1ORCID,Loukrezis Dimitrios123,Georg Niklas124,De Gersem Herbert12,Römer Ulrich4ORCID

Affiliation:

1. Institute for Accelerator Science and Electromagnetic Fields TU Darmstadt Darmstadt Germany

2. Centre for Computational Engineering TU Darmstadt Darmstadt Germany

3. Technology Siemens AG Munich Germany

4. Institut für Dynamik und Schwingungen TU Braunschweig Braunschweig Germany

Abstract

AbstractThis article introduces an ‐adaptive multi‐element stochastic collocation method, which additionally allows to re‐use existing model evaluations during either ‐ or ‐refinement. The collocation method is based on weighted Leja nodes. After ‐refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub‐element in a hierarchical manner. For ‐refinement, the local polynomial approximations are based on total‐degree or dimension‐adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non‐smooth or strongly localized response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics-informed polynomial chaos expansions;Journal of Computational Physics;2024-06

2. Sequential sampling for functional estimation via Sieve;Quality and Reliability Engineering International;2024-04-23

3. Sparse polynomial chaos expansion for high-dimensional nonlinear damage mechanics;Probabilistic Engineering Mechanics;2024-01

4. Active learning-based domain adaptive localized polynomial chaos expansion;Mechanical Systems and Signal Processing;2023-12

5. Physics-Informed Polynomial Chaos Expansions;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3