Preparation of functionalized boron nitride sheets/epoxy resin composites by using a green and efficient approach for elevated thermal conductivity

Author:

Jiang Junyi1,BinteTouhid S. Salvia1,Sun Haoran1,Zheng Yanglei1,Shathi Mahmuda Akter2,Khoso Nazakat Ali3,Fu Feiya4,Liu Xiangdong1ORCID

Affiliation:

1. Institute of Composite Materials, School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China

2. Fashion Design and Engineering Zhejiang Sci‐Tech University Hangzhou People's Republic of China

3. Textile Materials and Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou People's Republic of China

4. Project Promotion Department Zhejiang Provincial Innovation Center of Advanced Textile Technology Shaoxing People's Republic of China

Abstract

AbstractWith the rapid evolution of integrated circuits and electronic devices, considerable research efforts are dedicated to thermally conductive but electrically insulative composites that may successfully allay “hot spot” concerns during device operation. In this study, a green, cheaply and effective method was proposed to improve thermal conductivity coefficient (λ) of boron nitride/epoxy composites by modifying boron nitride sheet (BN) surface with TACu nanoparticles that synthesized from tannic acid (TA) and copper sulphate. As a result, the TACu nanoparticles and BN work in concert to improve the thermal conductivity of the BN/epoxy composite. The ideal thermal conductivity coefficient, 1.61 W/mK, was present when the mass fraction of the created filler, BN@TACu, is 30 wt%. This value is 7.3 times higher than that of pure epoxy resin (0.22 W/mK) and significantly higher than the reported BN/epoxy composites containing 30 wt% fillers. Moreover, the interface compatibility between BN and epoxy resin is also significantly improved by the TACu nanoparticles on BN surfaces, giving the composites improved thermal and mechanical characteristics. This technology for BN surface modification has a lot of practical potential in the present electronic sector since it is relatively straightforward and easy to scale up.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3