4D flow MRI velocity uncertainty quantification

Author:

Rothenberger Sean M.1ORCID,Zhang Jiacheng2ORCID,Markl Michael3,Craig Bruce A.4,Vlachos Pavlos P.12,Rayz Vitaliy L.12

Affiliation:

1. Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA

2. School of Mechanical Engineering Purdue University West Lafayette Indiana USA

3. Department of Radiology at the Feinberg School of Medicine Northwestern University Chicago Illinois USA

4. Department of Statistics Purdue University West Lafayette Indiana USA

Abstract

AbstractPurposeAn automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality.MethodsThe method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations. VD is evaluated as the Mahalanobis distance between the local velocity measurement and the local error distribution. The uncertainty model is validated synthetically and tested in vitro under different flow resolutions and noise levels. The VD's application is demonstrated on two in vivo thoracic vasculature 4D flow datasets.ResultsSynthetic results show the proposed uncertainty quantification method is sensitive to aliased regions across various velocity‐to‐noise ratios and assesses velocity error correlations in four‐ and six‐point acquisitions with correlation errors at or under 3.2%. In vitro results demonstrate the method's sensitivity to spatial resolution, venc settings, partial volume effects, and phase wrapping error sources. Applying VD to assess in vivo 4D flow MRI in the aorta demonstrates the expected increase in measured velocity quality with contrast administration and systolic flow.ConclusionThe proposed 4D flow MRI uncertainty quantification method assesses velocity measurement error owing to sources including noise, intravoxel phase dispersion, and velocity aliasing. This method enables rigorous comparison of 4D flow MRI datasets obtained in longitudinal studies, across patient populations, and with different MRI systems.

Funder

Division of Intramural Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3