Distinct strategy for the improvement of conductivity and electromagnetic shielding properties of MWCNTs/PLA/PBS composites: Synergistic effects of double percolation structure and UV aging

Author:

Jia Shikui12ORCID,Yan Zongying1,Zhu Yan12,Zhang Qifeng1,Zhang Xiangyang1,Coates Phil2,Liu Wei3,Zhao Zhongguo1

Affiliation:

1. School of Materials Science and Engineering National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, Shaanxi University of Technology Hanzhong China

2. Interdisciplinary Research Centre in Polymer Engineering School of Engineering, Design, and Technology, University of Bradford Bradford West Yorkshire UK

3. School of Materials and Energy Engineering Guizhou Institute of Technology Guiyang China

Abstract

AbstractTo reveal a relationship among crystallization, conductivity and electromagnetic shielding properties of full biodegradable polymer after ultraviolet (UV) aging, polybutylene succinate (PBS)‐based composites with different weight ratios of multi‐wall carbon nanotubes (MWCNTs)/polylactic acid (PLA) /PBS masterbatch were processed via melt‐compounding approach. Morphology of the MWCNTs/PLA/PBS masterbatch prepared by Pickering emulsion method was confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. Comprehensive effects of different content of masterbatch and UV aging time on the morphology, crystallization, and electrical and electromagnetic shielding properties of MWCNTs/PLA/PBS composites were shown by Fourier transform infrared spectroscopy (FTIR), SEM, wide angle X‐ray diffraction (WAXD), differential scanning calorimeter (DSC), polarizing microscope (POM), ultra‐depth of field optical microscope, resistance tester, and vector network analyzer. Compared with PBS composite with 0.1 wt% MWCNTs, the electrical conductivity of PBS composite with the MWCNTs/PLA/PBS masterbatch increased by two orders of magnitude, and dispersed morphology for the composite showed double percolation structure. After UV aging, both MWCNTs/PBS composites and the PBS composites with the MWCNTs/PLA/PBS masterbatch, their surface presented burnt yellow and parts of flaws, while both their electrical conductivity and total electromagnetic shielding effectiveness gradually increased. Moreover, with the increasing of UV aging time, not only crystal size of these PBS‐based composites became large, but also their crystal interface became clearer. Furthermore, when UV aging time reached 528 h, the tensile strength of 0.6 M/PLA/PBS composite decreased by 12.6%, while its total electromagnetic shielding effectiveness increased by 39.8%, compared with the composite without UV aging.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3