Divergent projections from locus coeruleus to the corticobasal ganglia system and ventral tegmental area of the adult male zebra finch

Author:

Alvarado Jonnathan Singh12ORCID,Hatfield Jordan13,Mooney Richard1

Affiliation:

1. Department of Neurobiology Duke University Medical Center Durham North Carolina USA

2. Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts USA

3. Duke University School of Medicine Durham North Carolina USA

Abstract

AbstractThe locus coeruleus (LC) is a small noradrenergic brainstem nucleus that plays a central role in regulating arousal, attention, and performance. In the mammalian brain, individual LC neurons make divergent axonal projections to different brain regions, which are distinguished in part by which noradrenaline (NA) receptor subtypes they express. Here, we sought to determine whether similar organizational features characterize LC projections to corticobasal ganglia (CBG) circuitry in the zebra finch song system, with a focus on the basal ganglia nucleus Area X, the thalamic nucleus DLM, as well as the cortical nuclei HVC, LMAN, and RA. Single and dual retrograde tracer injections reveal that single LC–NA neurons make divergent projections to LMAN and Area X, as well as to the dopaminergic VTA/SNc complex that innervates this CBG circuit. Moreover, in situ hybridization revealed that differential expression of mRNA encoding α2A and α2C adrenoreceptors distinguishes LC‐recipient CBG song nuclei. Therefore, LC–NA signaling in the zebra finch CBG circuit employs a similar strategy as in mammals, which could allow a relatively small number of LC neurons to exert widespread yet distinct effects across multiple brain regions.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noradrenergic neuromodulation in ageing and disease;Neuroscience & Biobehavioral Reviews;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3