Integrating ecosystem and contaminant models to predict the effects of ecosystem fluxes on contaminant dynamics

Author:

McLeod Anne M.1ORCID,Leroux Shawn J.2ORCID,Rizzuto Matteo3ORCID,Leibold Mathew A.4ORCID,Schiesari Luis5ORCID

Affiliation:

1. School of Biological Sciences University of Canterbury Christchurch New Zealand

2. Department of Biology Memorial University of Newfoundland St John's California USA

3. School of the Environment Yale University New Haven Connecticut USA

4. Department of Biology University of Florida Gainesville Florida USA

5. School of Arts, Sciences and Humanities University of São Paulo São Paulo Brazil

Abstract

AbstractEnvironmental contamination is one of the major drivers of ecosystem change in the Anthropocene. Toxic chemicals are not constrained to their source of origin as they cross ecosystem boundaries via biotic (e.g., animal migration) and abiotic (e.g., water flow) vectors. Meta‐ecology has led to important insights on how spatial flows or subsidies of matter across ecosystem boundaries can have broad impacts on local and regional ecosystem dynamics but has not yet addressed the dynamics of pollutants in recipient ecosystems. Incorporating meta‐ecosystem processes (i.e., flux of materials across ecosystem boundaries) into contaminant dynamics can elucidate how contaminants may reverberate among local food chains. Here, we derive a modeling framework to predict how spatial ecosystem fluxes can influence contaminant dynamics and how this influence is dependent on the type of ecosystem flux (e.g., herbivore movement vs. abiotic chemical flows). We mix an analytical and numerical approach to analyze our integrative model which couples two subcomponents that have previously been studied independently of each other—an ecosystem model and a contaminant model. We observe an array of dynamics for how chemical concentrations change with increasing nutrient input and loss rate across trophic levels. When we tailor our range of chemical parameter values (e.g., environmental uptake of contaminant and assimilation efficiency of the contaminant) to specific organic chemicals, our results demonstrate that increasing nutrient input rates can lead to trophic dilution in pollutants such as polychlorinated biphenyls across trophic levels. However, increasing nutrient loss rate causes an increase in the concentrations of chemicals across all trophic levels. A sensitivity analysis demonstrates that nutrient recycling is an important ecosystem process impacting contaminant concentrations, generating predictions to be addressed by future empirical studies. Importantly, our model demonstrates the utility of our framework for identifying drivers of contaminant dynamics in connected ecosystems including the importance that (1) ecosystem processes and (2) movement, especially movement of lower trophic levels, have on contaminant concentrations.

Funder

Fundação Amazônia Paraense de Amparo à Pesquisa

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3